skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dhatt, Balpreet K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments. 
    more » « less
  2. A framework combining two powerful tools of hyperspectral imaging and deep learning for the processing and classification of hyperspectral images (HSI) of rice seeds is presented. A seed-based approach that trains a three-dimensional convolutional neural network (3D-CNN) using the full seed spectral hypercube for classifying the seed images from high day and high night temperatures, both including a control group, is developed. A pixel-based seed classification approach is implemented using a deep neural network (DNN). The seed and pixel-based deep learning architectures are validated and tested using hyperspectral images from five different rice seed treatments with six different high temperature exposure durations during day, night, and both day and night. A stand-alone application with Graphical User Interfaces (GUI) for calibrating, preprocessing, and classification of hyperspectral rice seed images is presented. The software application can be used for training two deep learning architectures for the classification of any type of hyperspectral seed images. The average overall classification accuracy of 91.33% and 89.50% is obtained for seed-based classification using 3D-CNN for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The DNN gives an average accuracy of 94.83% and 91% for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The accuracies obtained are higher than those presented in the literature for hyperspectral rice seed image classification. The HSI analysis presented here is on the Kitaake cultivar, which can be extended to study the temperature tolerance of other rice cultivars. 
    more » « less
  3. Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, riceChalky Grain 5(OsCG5) that regulates natural variation for grain chalkiness under heat stress.OsCG5encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance ofOsCG5exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness ofOsCG5knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressingOsCG5are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation atOsCG5may contribute towards rice grain quality under heat stress. 
    more » « less
  4. Accurate measurement of seed size parameters is essential for both breeding efforts aimed at enhancing yields and basic research focused on discovering genetic components that regulate seed size. To address this need, we have developed an open-source graphical user interface (GUI) software, SeedExtractor that determines seed size and shape (including area, perimeter, length, width, circularity, and centroid), and seed color with capability to process a large number of images in a time-efficient manner. In this context, our application takes ∼2 s for analyzing an image, i.e., significantly less compared to the other tools. As this software is open-source, it can be modified by users to serve more specific needs. The adaptability of SeedExtractor was demonstrated by analyzing scanned seeds from multiple crops. We further validated the utility of this application by analyzing mature-rice seeds from 231 accessions in Rice Diversity Panel 1. The derived seed-size traits, such as seed length, width, were used for genome-wide association analysis. We identified known loci for regulating seed length ( GS3 ) and width ( qSW5/GW5 ) in rice, which demonstrates the accuracy of this application to extract seed phenotypes and accelerate trait discovery. In summary, we present a publicly available application that can be used to determine key yield-related traits in crops. 
    more » « less
  5. Summary A higher minimum (night‐time) temperature is considered a greater limiting factor for reduced rice yield than a similar increase in maximum (daytime) temperature. While the physiological impact of high night temperature (HNT) has been studied, the genetic and molecular basis of HNT stress response remains unexplored.We examined the phenotypic variation for mature grain size (length and width) in a diverse set of rice accessions under HNT stress. Genome‐wide association analysis identified several HNT‐specific loci regulating grain size as well as loci that are common for optimal and HNT stress conditions.A novel locus contributing to grain width under HNT conditions colocalized withFie1, a component of the FIS‐PRC2 complex. Our results suggest that the allelic difference controlling grain width under HNT is a result of differential transcript‐level response ofFie1in grains developing under HNT stress.We present evidence to support the role ofFie1in grain size regulation by testing overexpression (OE) and knockout mutants under heat stress. The OE mutants were either unaltered or had a positive impact on mature grain size under HNT, while the knockouts exhibited significant grain size reduction under these conditions. 
    more » « less